

CATOLICA FACULTY OF BIOTECHNOLOGY

PORTO

Spore forming pathogenic bacteria

Paul Gibbs

Paula Teixeira

Spore forming bacteria

- Basic characteristics
 - All species produce endospores that are heat, chemical and radiation resistant to different degrees.
 - Some species cause food poisoning / intoxication.
 - Some species cause specific types of food spoilage.
 - Several species cause disease of man and domestic animals.

Bacterial spores

- Dehydrated
 - therefore heat resistant.
- Dormant core containing essentials of a new cell (e.g. DNA, etc.).
- Cysteine rich proteinaceous outer spore coat that absorbs ionising radiation and is chemically resistant.
- Germination may require heat shock and specific compounds, e.g. alanine, lactate

Sporulation

- 1. Division of nuclear material
- 2. Septation of pre-spore nucleus
- 3. New spore membrane around nucleus
- 4. Synthesis of spore cortex, UV & chemical resistance, core dehydration
- 5. Coat synthesis, radiation resistance
- DPA & divalent ion uptake, spore dehydration, refractility & dormancy completed; cell lysis to release spore.

Spore forming bacteria

- Species of concern to food microbiologists:
 - Bacillus spp; aerobic facultative, sporulate only aerobically
 - Clostridium spp; anaerobic aerotolerant, sporulate only anaerobically
 - Desulfotomaculum spp.

Clostridium species

- Gram positive spore forming rods.
- Anaerobic to aerotolerant.
- Sporulate anaerobically only
- Species of concern:
 - Clostridium botulinum.
 - Clostridium perfringens (welchii).
 - Clostridium difficile?

Clostridium botulinum

- Seven toxin types
 - A G.
- A, B, E, F
 - associated with human botulism.
- C, D
 - Group III -associated with animal botulism only (NP)
- A, B, F
 - Group I Proteolytic, mesophilic
- B, E, F
 - Group II Non-proteolytic, psychrotrophic

Clostridium botulinum botulism

- Most severe form of food poisoning.
- Illness due to ingestion of toxin.
- Incubation period
 - 8 hours to 8 days.
- Lethal dose
 - 0.005 0.1 µg (proteolytic).
 - 0.1 0.5 µg (non-proteolytic).
- Mortality rate
 - 10% (if prompt treatment).

Clostridium botulinum botulism

- Symptoms
 - generalised muscular weakness.
 - headache.
 - dizziness.
 - visual disturbances.
 - nausea.
 - vomiting.
 - difficulties with speech and swallowing.
 - descending paralysis.
 - respiratory failure.

Clostridium botulinum foods involved

- Meat and meat products.
- Dairy products.
- Fish.
- Vegetables.
- Infant foods.
- Canned foods.

PORTO

Examples of recent outbreaks

Year	Location	No. of cases	No. of deaths	Implicated food
2016	Germany and Spain	6	?	Dried salted fish
2015	Ohio	29	2	Potato salad prepared with home- canned potatoes
2015	Portugal	4	0	Smoked sausages

A recent recall...

Illnesses reported; Loblaw expands recall of organic baby food

BY CORAL BEACH | FEBRUARY 10, 2017

'Botulinum cook'

• A heat process giving a 12 log cycle kill of the spores of the most heat resistant *C. botulinum* strain.

Commercially

 equivalent to at least 3 minutes at 121° C at the slowest heating point in the container.

Characteristics of C. botulinum						
Group						
Ι	I					
A, B, F	B, E, F					
+	-					
4.6	5.0					
10%	5%					
0.94	0.97					
10 - 48 °C	3.3 − 45 °C					
25 min	<0.1 min					
	CS Of C. bo Gr I A, B, F + 4.6 10% 0.94 10 - 48 °C 25 min					

Characteristics of botulinal toxin

- Proteins; MWt ca 150kDa; heavy & light chains
- **Neurotoxins**
- \emph{O} Specific peptidase activities on synaptic vesicle proteins

C. botulinum - control of psychrotrophic strains

- A heat treatment of 90 ° C for 10 min or equivalent lethality.
- A pH of 5 or less throughout the food and throughout components of complex foods.
- A minimum salt level of 3.5% in the aqueous phase throughout the food and throughout the components of complex foods.
- An Aw of 0.97 or less throughout the food and throughout the components of complex foods.
- A combination of heat and preservative factors which can be shown consistently to prevent growth and toxin production by psychrotrophic *C. botulinum* at temperatures up to 10 °C.

ACMSF; 1992

C. botulinum - plating media

• Horse Blood Agar.

• Reinforced Clostridial Agar.

• Egg Yolk Agar.

C. botulinum - isolation from foods

Enrichment

- self enrichment
 - vacuum pack & incubate at 5-30 ° C for >10 days if food will support good growth of the organism.
- enrichment media
 - Robertson's cooked meat medium.

Clostridium perfringens Type A food poisoning

- Incubation period
 - 8 22 hours.
- Symptoms
 - diarrhoea, severe abdominal pain, nausea (occasionally)
- Infective dose
 - >10⁵ cells/g
- Mortality
 - very rare.

Clostridium perfringens foods involved

Meat and meat products.

Milk and dairy products.

• Fish and fish products.

Characteristics of C. perfringens

Temperature range

Inhibitory pH Minimal aw Inhibitory NaCl concⁿ D₉₅ of spores 15 – 50 °C (optimum 43 – 45 °C) 5.0 0.95 5% 1.3 – 6.4 minutes

Characteristics of *C. perfringens* enterotoxin (cpe)

- Cpe formed on sporulation in intestine
- Cpe a protein of *ca* **35kDa**
- Heat sensitive (60 ° C / 5 mins)
- Resistant to some proteases
- Initial binding to plasma membrane intestinal cells;
- Interaction with plasma membrane proteins leakage
 cell contents

Recent outbreaks...

Year	Location	No. of cases	No. of deaths	Implicated food
2016	USA	>20	3	Turkey and mashed potatoes
2013	UK	150	0	Chicken balti
2012	Norway	>43	0	Beef stew

PORTO

Clostridium perfringens media and methods

- Direct plating
 - if suspected high numbers.
- Most probable number technique
 - if suspected low numbers.

C. perfringens - plating media

- Egg yolk free tryptose sulphite cycloserine agar (EYFTSC).
- Oleandomycin polymyxin sulphadiazine perfringens agar (OPSP).
- Shahidi Ferguson perfringens agar (SFP).
- Neomycin blood agar.
- Sulphite polymyxin sulphadiazine agar (SPS).

C. perfringens - plating media

- EYFTSC
 - Selective agents Cycloserine.
 - Indicator system Sulphide blackening.
- OPSP
 - Selective agents Oleandomycin, polymyxin, sulphadiazine.
 - Indicator system Sulphide blackening.
- SFP
 - Selective agents Sulphadiazine, polymyxin, kanamycin.
 - Indicator system Sulphide blackening, egg yolk.

C. perfringens - plating media

Neomycin blood

- Selective agents Neomycin.
- Indicator system Haemolysis.

• SPS

- Selective agents Polymyxin, sulphadiazine.
- Indicator system Sulphide blackening.

C. perfringens - MPN media

• Differential Reinforced Clostridia medium (DRCM).

• LS medium.

Iron-milk medium.

C. perfringens - confirmation

- Motility (non-motile).
- Nitrate reduction.
- Gelatine liquefaction.
- Lactose fermentation.
- LEYM agar
- Lactose gelatine medium.
- Nitrate, indole motility medium

Clostridium difficile: Foodborne Transmission?

- *Clostridium difficile* is a major cause of illness
- Initially recognized as an hospital pathogen
- Now recognized as an important cause of severe community acquired infections
- The source of community acquired *C. difficile* yet to be established
- Foodborne being one route considered

PORTO

C. difficile in foods

- High prevalence of *C. difficile* in animals
- Identified in food products:
 - Meat
 - Fish
 - Produce
 - Water
- No foodborne illness outbreaks have been directly linked to *C. difficile*

C. difficile in foods: research needed...

- Available data cannot be considered a true prevalence
- Low levels of the pathogen in foods may require improved detection methods
- Knowledge gaps with respect to growth ranges of C. difficile in foods

Bacillus species

- Gram positive spore forming rod.
- Aerobic and facultatively anaerobic.
- Species of concern
 - Bacillus cereus and closely related species e.g. B. thuringiensis.
 - Bacillus subtilis.
 - Bacillus licheniformis.

Bacillus cereus two types of food poisoning

Characteristics *B. cereus* toxins; (1) emetic toxin, cereulide

- Ring-form peptide; hydrophobic; 3 repeats of 4 amino acids; MWt 1.2kDa.
- Heat stable 121° C / 90 mins.
- Acid stable pH 2 11.
- Protease stable (trypsin, pepsin).
- Binds to 5-HT₃ receptor (vagus nerve stimulated).
- Non-immunogenic

Characteristics *B. cereus* toxins; (2) diarrhoeagenic enterotoxin

- $\partial \partial$ Excreted with a signal peptide
- A May be at least two active moieties
- \log Mode of action unknown binds weakly to ileal cells
- ဂ Immunogenic

B. cereus - foods involved

- Emetic
 - farinaceous materials especially
 - boiled rice.
 - cooked pasta.
 - noodle dishes.
- Diarrhoeagenic
 - wide variety of foods but commonly
 - meat and vegetable dishes.
 - soups.
 - sauces.
 - puddings.

Characteristics of *B. cereus*

Temperature range

4 – 50 °C (optimum 28 – 35 °C)

Minimum pH growth (Stability)

4.3 (Diarrhoeagenic toxin 4 – 11) (Emetic toxin 2 – 11)

D₉₅ spores

Minimum a_w

1.2 – 3.6 minutes

0.95 (0.91 – rice)

PORTO

B. cereus - plating media

• Mannitol egg yolk polymyxin agar (MEYP).

 Polymyxin pyruvate egg yolk mannitol bromothymol blue agar (PEMBA)

B. cereus - plating media Selective and diagnostic components

- Polymyxin B
 - Selective agent.
- Mannitol and indicator
 - Differentiation.
- Egg yolk
 - Differentiation.
- Low level of peptone / absence of meat extract
 - Encourage sporulation
 - Inhibit lecithinase production by *B. polymyxa*.

Bacillus cereus - rapid stain

- Prepare films from centre of 1 day old colony or edge of 2 day old colony.
- Air-dry and heat fix.
- Stain with 0.3% Sudan Black in 70% ethanol for 15 minutes.
- Wash slide with xylene for 5 seconds. Blot dry.
- Counter stain with 0.5% w/v Safranin for 20 seconds.

Bacillus cereus - rapid stain

Appearance

- Cells are 4-5 µm long by 1-1.5 µm wide.
- Square ends with rounded corners.
- Spores stain pale to mid green
- Spores are central or para-central in position.
- Spores do not swell sporangium.
- Lipid globules are black.
- Vegetative cytoplasm is red.

Detection of *B. cereus* toxins

- Diarrhoeagenic
 - RPLA, TECRA.
- Emetic
 - Primate feeding tests.
 - HEp-2 cell assay.

Summarizing 'Spore forming bacteria'

Basic characteristics

- All species produce endospores that are heat, chemical and radiation resistant to different degrees.
- Certain species cause food poisoning / intoxication, some very severe
- Some species cause specific types of food spoilage.
- Several species cause diseases of man, insects and domestic animals.

