Packaging technology and preservation of foods

Fátima Poças
Biotechnology Faculty
Universidade Católica Portuguesa 2017
Agenda

- Packaging systems for different food processing technologies:
 - Frozen foods
 - Dry and dried foods
 - In-pack thermal processed foods
 - Aseptic processed foods
 - Modified atmosphere packaging
 - Microwavable foods
 - High pressure processed foods
Frozen foods

- Main causes of degradation
 - Dehydration
 - Oxidation
 - Changes in colour and texture
 - Loss of vitamins (exudate)
Frozen food

- Packaging requirements
 - Reduced head-space
 - Allow for volume expansion
 - Moisture barrier
 - Light and oxygen barrier
 - Mechanical resistance (tearing and perfuration)
 - Compatibility with application:
 - Not to stick to food
 - Fat and water impermeable
 - Use in oven or boiling
Types of packaging for frozen foods

- Flexible packaging as primary packaging
 - LDPE bags
 - (modified) PP bags
 - Multilayer plastic/metalised bags

- Folding carton as secondary or primary packaging
 - With a non printed inner bag

- Folding carton as primary packaging
 - Carton coated with PE
Agenda

- Packaging systems for different food processing technologies:
 - Frozen foods
 - Dry and dried foods
 - In-pack thermal processed foods
 - Aseptic processed foods
 - Modified atmosphere packaging
 - Microwavable foods
 - High pressure processed foods
Dry and dried foods

- Main causes of degradation
 - Increase in moisture
 - Change in texture
 - Microbial development
 - Fat oxidation
Dry and dried foods

- Packaging requirements
 - Moisture barrier
 - Light and oxygen barrier (fat products)
 - Low oxygen residual content (fat products)
 - Vacuum
 - Inert atmosphere
 - Absorbers
 - Closure between uses
Types of packaging for dry and dried foods

- **High barrier to moisture**
 - LDPE, OPP
 - OPP metalised

- **High barrier to oxygen**
 - Multilayer with EVOH
 - Multilayer with Al foil

- **Barrier to light**
 - Multilayer with Al foil
 - Systems with a folding carton
Agenda

• Packaging systems for different food processing technologies:
 √ – Frozen foods
 √ – Dry and dried foods
 – In-pack thermal processed foods
 – Aseptic processed foods
 – Modified atmosphere packaging
 – Microwavable foods
 – High pressure processed foods
In-pack thermal processed foods (Canned food)

- Typically metal cans
- Other materials such as glass, multilayer composite materials

- Main principles:
 - Heat processing of filled closed can
 - Specified process temperature and time
 - Inactivate/kill microorganisms
 - Inactivate enzymes
 - Commercial stability, long shelf-life at room temperature storage
In-pack thermal processed foods (Canned food)

- Packaging requirements
 - Heat conduction
 - Geometry
 - Size
 - Heat resistance
 - Metals: tin-plate, aluminium
 - Internal coating
 - Epoxi-phenolic
 - Polyester
In-pack thermal processed foods (Canned food)

- Packaging requirements
 - Mechanical resistance during heat treatment
 - Internal pressure, volume expansion
 - Vacuum up on cooling
In-pack thermal processed foods (Canned food)

- Packaging requirements
 - Prevent recontamination
 - Hermetic
 - Double seam
Agenda

• Packaging systems for different food processing technologies:
 √ – Frozen foods
 √ – Dry and dried foods
 √ – In-pack thermal processed foods
 – Aseptic processed foods
 – Modified atmosphere packaging
 – Microwavable foods
 – High pressure processed foods
Aseptic packaging

- Heat treatment of food and packaging separately
- Filling and closing under aseptic conditions
- Result: absence of viable microorganisms under normal non-refrigerated conditions
Aseptic packaging

- Advantages
 - Ultra High Temperature treatment
 - Use of packaging materials that do not need to be resistant to high temperatures
Aseptic packaging

• Requirements
 – Suitable for sterilization
 – Hermetic – good seals
 – Gas, aroma and light barrier

• Multilayer multimaterial
• Systems
 – form-fill-seal
 – Pre-formed packs
Aseptic packaging

- Packaging sterilization
 - Vapor
 - Hot air
 - Heat energy from processing
 - Radiation UV, IV, γ
 - Hydrogen peroxide

- Sterilization degree = \(\varphi \) (initial contamination, pack and shape, treatment efficiency)

Combination of techniques
Aseptic systems – Liquid cartons

- *Tetra Pak*

- Tetra Brik
- Tetra Classic
- Tetra Evero
- Tetra Fino
- Tetra Gemina
- Tetra Wedge
- Tetra Prisma
Aseptic systems – Liquid cartons

- Combibloc

Combifit
Combibloc
Combidome
Agenda

- Packaging systems for different food processing technologies:
 - Frozen foods
 - Dry and dried foods
 - In-pack thermal processed foods
 - Aseptic processed foods
 - Modified atmosphere packaging
 - Microwavable foods
 - High pressure processed foods
Modified atmosphere packaging - MAP

- Use of composition different from normal air (O$_2$ and CO$_2$), in combination with refrigeration
- Composition of normal air: N$_2$ 79 %, O$_2$ 21 %, CO$_2$ 0.04 %, gases inerts e water vapor

- Applications
 - Meat and fish
 - Pasta and baking products
 - Cheese
 - Dry products
 - Vegetables and fruits
MAP

- Gases used
 - Oxygen
 - Oxidation and growth of micro aerobic
 - Red colour if fresh meat
 - Respiration of fruits and vegetables
 - Avoid anaerobic growth
 - Carbon dioxide
 - Avoid growth of aerobic bacteria and moulds
 - Absorption by food (fat): excess can yield bad taste, exudation, and packaging collapse
 - Nitrogen
 - Inert; balance and avoid collapse
 - Others: argon
Critical parameters
- Initial quality and product nature
 - Non-respiring: water activity, fat content, etc.
 - Respiring: Specie, type and maturation grade
- Optimization of mixture composition
- Control of temperature
- Equipment efficiency
- Packaging characteristics
MAP

• Packaging characteristics
 – Barrier properties
 – Oxygen
 – Carbon dioxide
 – Water vapor
 – $\beta = \frac{PCO_2}{PO_2}$
 – Change with temperature
 – Format and volume
 – Integrity
 – Optical properties
 – Mechanical resistance
MAP – Recommended atmospheres

<table>
<thead>
<tr>
<th>Product</th>
<th>T °C</th>
<th>O₂ %</th>
<th>CO₂ %</th>
<th>N₂ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red meat</td>
<td>-1 a 2</td>
<td>70</td>
<td>30</td>
<td>-</td>
</tr>
<tr>
<td>White meat</td>
<td>-1 a 2</td>
<td>-</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Fish (low fat)</td>
<td>-1 a 2</td>
<td>30</td>
<td>40</td>
<td>30</td>
</tr>
<tr>
<td>Fish (high fat)</td>
<td>-1 a 2</td>
<td>-</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>Pasta</td>
<td>0 a 5</td>
<td>-</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Baked</td>
<td>Amb</td>
<td>-</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Cheese (hard)</td>
<td>0 a 5</td>
<td>-</td>
<td>100</td>
<td>-</td>
</tr>
<tr>
<td>Cheese (soft)</td>
<td>0 a 5</td>
<td>-</td>
<td>30</td>
<td>70</td>
</tr>
<tr>
<td>Dried</td>
<td>Amb</td>
<td>-</td>
<td>-</td>
<td>100</td>
</tr>
</tbody>
</table>
MAP – Recommended atmospheres

\[C_{CD}(\infty) \approx C_{CD}^{\text{air}} + \frac{1}{\beta} \left[C_{Ox}^{\text{air}} - C_{Ox}(\infty) \right] \]
MAP - Exemples of packaging

- Meat and fish
 - Tray EPS/EVOH/LDPE with lids PET/PVDC/LDPE
 - Trays HDPE or PP with bag PET/PVDC/LDPE ou PA/PVDC/LDPE
MAP - Examples Bags and trays

- Films.
 - Polyethylene (PE)
 - Polypropylene (PP)
 - Mixture PE-EVA
 - Resin K (Styrene-Butadiene Copolymers)
- Combination: copolymers, laminates, coextruded
- Microperforated and microporous films
- Boxes with perforations
- Films responding to temperature change
Agenda

- Packaging systems for different food processing technologies:
 - Frozen foods
 - Dry and dried foods
 - In-pack thermal processed foods
 - Aseptic processed foods
 - Modified atmosphere packaging
 - Microwavable foods
 - High pressure processed foods
Packaging for microwave

Comparision of heating mechanism in conventional and microwave oven

CONVENTIONAL
- Heating Element
- Furnace
- Insulation

MICROWAVE
- Microwave Port
- Microwave Cavity
- Insulation

Energy transfer
- External heating source
- Heat Flow: outside to inside
- Material independent
- Energy losses

Energy conversion
- Internal heating
- Inside to outside
- Material dependent
- Highly efficient
Packaging for microwave

• Should consider
 – Thermal performance of product and packaging
 – Shape and size of packaging
 – Type of material

• Temperature
 – Amount of energy absorbed
 – Mass, composition, shape and thickness of foods
 – Thermal properties (conductivity and heat capacity)
 – Initial temperature
 – Shaking, covering, apply intermittent treatment
Packaging for microwave

• Shape and size
 – Regular, avoid sharp corners
 – Round and ovals instead of squared
 – Bottom concave for lower thickness of food at the centre
 – Use of lids to increase temperature uniformisation

• Type of material
 – Microwave transparent
 – Thermal resistance
 – Product preservation
Packaging for microwave

- Exemples
 - Trays in board coated with PET and other plastics
 - Glass
 - Plastic: PP, CPET
Agenda

- Packaging systems for different food processing technologies:
 - Frozen foods
 - Dry and dried foods
 - In-pack thermal processed foods
 - Aseptic processed foods
 - Modified atmosphere packaging
 - Microwavable foods
 - High pressure processed foods
High pressure processed foods

- HPP (also known as high hydrostatic pressure processing and ultrahigh pressure processing)
- involves the use of pressures in the range of 100–800 MPa, with or without the application of heat, for inactivating a variety of pathogenic and spoilage vegetative bacteria, yeasts, molds, viruses, and spores to ensure microbiologically safe foods.
- It can be combined with thermal treatment
High pressure processed foods

Table 1 Unique advantages and limitations of high pressure food processing

<table>
<thead>
<tr>
<th>Description</th>
<th>Advantage</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrostatic pressure</td>
<td>Rapid, quasi-instantaneous uniform distribution throughout the sample</td>
<td>Batch or semicontinuous operation</td>
</tr>
<tr>
<td>Thermal distribution</td>
<td>Minimal or reduced thermal exposure
Instant temperature increase and subsequent cooling upon depressurization</td>
<td>Preheating step for pressure-assisted thermal processing (PATP)
Thermal nonuniformity during PATP</td>
</tr>
<tr>
<td>Physical compression</td>
<td>Suitable for high moisture-content foods</td>
<td>Not suitable for products containing dissimilar compressibility materials such as marshmallows</td>
</tr>
<tr>
<td>Product handling</td>
<td>Suitable for both liquid and pumpable foods</td>
<td>Throughput limited due to batch operation</td>
</tr>
<tr>
<td>Process time</td>
<td>Independent of product shape and size</td>
<td></td>
</tr>
<tr>
<td>Functionality</td>
<td>Opportunity for novel product formulation
Distinct products through pressure effects such as protein denaturation, carbohydrate gelatinization, and fat crystallization</td>
<td></td>
</tr>
<tr>
<td>Reaction rate</td>
<td>Within some pressure-thermal boundary conditions, pressure accelerates microbial inactivation</td>
<td>Variable efficacy in enzyme inactivation; pressure alone cannot inactivate bacterial spores</td>
</tr>
<tr>
<td>Consumer acceptance</td>
<td>Consumer acceptance as a physical process</td>
<td>Higher processing costs and batch operations are barriers for commodity product processing</td>
</tr>
</tbody>
</table>
High pressure processed foods

- Packaging requirements (Important parameters to consider)
 - Volume and geometry (productivity aspects, not treatment)
 - Composition (polymer type, film thickness, and sealing and barrier properties)
 - At least one interface of the package should be flexible enough to transmit pressure.
High pressure processed foods

- Headspace air, oxygen in particular, should be reduced:
 - Dissolved oxygen becomes more reactive at high pressure
 - Air has different compressibility properties than water and more effort is needed to compress the air (vacuum)
High pressure processed foods

- Resistance to the treatment
 - Physical changes in the structure of the polymers
 - Maintain barrier properties after treatment
 - Effect on migration on packaging components

Bull et al, 2010

Mensitieri et al 2013
Conclusion

• Packaging requirements
 – changes considerably with the technology used to preserve the food
 – It should be considered together in the food process design