

Biofilms in food industry *structure, function and control strategies*

\$4500 0.8 kV ×600 50.0+m \$\$4500 0 8 kV ×4.00K 7.50+m

INRA MIMA2 Imaging Center

Biofilms everywhere !

Axenic biofilms structural diversity

Bridier et al. J. Microbio. Methods, 2010

50 µm

3D-driven heterogeneity

The challenge of a collective resistance

Disinfectants	Ratio of active concentration between biofilms and free cells
Oxidizing Agents	5 - 600
Quaternary Ammonium	10 - 1000

Activity of BAC on *Listeria* monocytogenes free cells (O), adherent cells (Δ), biofilm cells (\oplus)

Frank and Koffi, 1990

Structural adaptation to toxic compounds

The case of Thiomonas spp. and arsenic

marchal et al. Plos One 2011

Resistance vs tolerance: a case study with antibiotics

Relation biofilm architecture – tolerance to biocides

 \rightarrow Diffusion – reaction limitation

Relation biofilm architecture – tolerance to biocides

 \rightarrow Stress response, slow growth, persisters

Relation biofilm architecture – tolerance to biocides

 \rightarrow Emergence of resistant mutants

Hyper-tolerance to biocide in multispecies biofilms

- > The presence of different species in the biofilm can alter tolerance to biocides:
 - Increase/ modification of the matrix
 - Modification of architecture/ gradients
 - Share of "public goods"
 - Cell-cell communication (QS)
 - Undescribed mechanisms ?

Protection of *Staphylococcus aureus* in mixed species biofilms with *Bacillus subtilis* NDmed

S. aureus

log red CFU/well

PAA 3.5 g/L, 5min

ypqP is disrupted in the lab strain 168 but not in the natural strain NDmed

168 MPKQQTAELKPFFHNKTVLVTGGTGSIGSQIVKRLLMLTPKQVIVFSKDDSKQYVMSQKYAEDKRLLFVLGDVRDHRRVNQVMKGVDIVFHAAALKQVPT NDmed MPKQQTAELKPFFHNKTVLVTGGTGSIGSQIVKRLLMLTPKQVIVFSKDDSKQYVMSQKYAEDKRLLFVLGDVRDHRRVNQVMKGVDIVFHAAALKQVPT 100

168 CEDHPFEAIQTNLIGGQNVVEAALSHRVQHVINISTDKAVY* NDmed CEDHPFEAIQTNLIGGQNVVEAALSHRVQHVINISTDKAVSPVNTMGATKLLSEKLFHQANRHVQNKGTLFCSVRFGNVLGSRGSVIPILFEQMMEGEPL 200

B

NDmed TITDKNMTRFFMSIDDAATLTLQSAAITKGGETFIFKMESLKLEELIHGFEEYASQHGLPRPAAVEVGKRPGEKLHEELTSPHEIESLYEWGNLYAILPE 300

168

168

NDmed PEKHPDFRKVNLPGYQSDQAPLITKERIAQIIEELHQEKKA*

341

Effect of *ypqP* disruption in submerged biofilm structure and colony morphology in *B. subtilis* NDmed

Sanchez Vizuete et al. AEM 2015

Antimicrobials tolerance of biofilms formed by *B. subtilis ypqP* disrupted or non-disrupted strains

OPA 10 g/L, 5min

Sanchez Vizuete et al. AEM 2015

INFILTRATION OF THE BIOFILM MATRIX BY STEALTH SWIMMERS

S.aureus biofilms (red) + *B. thuringiensis swimmers* (green)

SWIMMERS INFILTRATION SENSITIZES *S. AUREUS* BIOFILMS TO CHEMICAL ANTIMICROBIALS

S.aureus + *B. thuringiensis* (Bt)

S.aureus + B. licheniformis (BI)

Can stealth swimmers deliver self-produced antimicrobial in the target biofilm ?

S. AUREUS BIOFILMS ARE DISRUPTED AND SUPPLANTED BY MOTILE BACILLI EXPRESSING LYSOSTAPHIN

Remaining	Invading
S. aureus	Bt

Similar results with *B. subtilis*

Houry et al. PNAS 2012

Toward chemical-free microbiological control in the food chain ?

> fongicides, disinfectants, preservatives, antibiotics

> biocontrol, protective biofilms, biopreservatives, probiotics

> Spatially-driven mechanisms of interactions

Houry et al., 2012 PNAS

Micalis Institute

INRA , AgroParisTech,

Université Paris-Saclay. Team B2HM & MIMA2 Imaging center