

Utilization of Job's Tears

as rice substitute

for Disaster/Emergency Food in Asia

Team Adlai, Sweden

Nawapan Boonchum

Lukas Luggin

Nalaputi Basoeki

Roxanne Targa

Lukas Italy

Food Innovation and Product Design

Experience with gluten free bread

Nawapan Thailand

Food Innovation and Product Design

Experience in pastry and bakery

Roxanne Philippines

Food Innovation and Product Design

Experience with gluten free cookies

Nalaputi Indonesia

Food Innovation and Product Design

Experience with starches

Karla Philippines

PhD Candidate & Lecturer at Lund University

Table of content

- FAO Challenges: Food Sector
- Challenges in Asia
- Ancient grain
- Job's tear
- Application
- Benefits

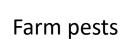
FAO challenges: Food sector

World population will be **10 Billion** people by 2050

650 Million undernourished people in 2030

Food insecurity arising from conflicts and disaster

One third of food loss


FAO challenges: Agricultural sector

33% Farmland degradation globally

Reduced agricultural yield

Urbanization of farmers

Challenges in Asia

- Water stressing among agricultural countries
- Climate change due to greenhouse gas emissions from nitrogen-based fertilizer
- Natural disasters such as intense precipitation, floods, droughts, storms
- Poor working condition in agricultural sector resulting to migration
- Food insecurity due to disasters and reduced agricultural productivity

Ancient grain for modern society

Reduced external input

Adaptable to natural environmentand biodiversity

> Reduced carbon footprint

Linked to culture and tradition

Job's tear or Adlai

Adlai grow better in infertile soil in rainfed upland ecosystem as compared to improved variety of rice and maize

	Table 1. Description, soil properties and grain yields of three upland crops in eleven environments in Nameuang villa							illage				
		S1*	S2*	S3	S4	85	S 6	S 7	S 8	S9*	S10	S11
	Elevation (m)	449	447	392	322	305	314	453	499	432	472	299
	Slope gradient (%)	8%	13%	50%	32%	24%	19%	28%	29%	11%	10%	21%
er in 🛛		More	Upland	More	Upland	Upland			Upland	More	More	
	Cropping history		rice in wet	than		t rice in wet	-	4 yrs			than	2yrs
infed		20yrs	season	20yrs	season	season	fallow	fallow	season	20yrs	20yrs	fallow
	No. of Commission	fallow	2013	fallow	2013	2011-2013			2013	fallow	fallow -2015 -	
m as	Year of cropping	15-Jun	16 1	14 1	14-Jun	12	12 1	15-Jun	16 1	14-Jun	-2015 - 14-Jun	12 1
	Sowing date Days to flowering	101	16-Jun 106	14-Jun 94	14-Jun 95	13-Jun 99	13-Jun 97	15-Jun 95	16-Jun 95	14-Jun 110	14-Jun 98	13-Jun 101
)	Days to Howering	101	100	94	95	99	91	95	95	110	90	101
c	pH (H ₂ O)	5.7	5.8	4.5	5.3	4.3	4.6	5.3	5.6	5.6	6.0	4.7
ty of	Total C (g kg ⁻¹)	30.3	29.1	16.9	16.2	18.3	18.5	24.4	25.8	30.5	34.1	17.2
<i>'</i>	Total N (g kg ⁻¹)	2.5	2.7	1.5	1.5	1.6	1.6	2.3	2.4	2.7	2.9	1.5
ze	C/N	12.3	10.8	11.1	10.8	11.2	11.3	10.5	10.9	11.3	12.0	11.5
	Avail P (mgP kg ⁻¹)	6.8	2.9	18.6	39.7	25.9	23.6	5.9	19.0	17.7	11.1	23.3
	Exc. Al3+ (cmol kg-1)	0	0	0.5	0.0	1.3	1.0	0.0	0.0	0.0	0.0	0.7
	Exc. Ca (cmol kg-1)	2.4	1.4	0.4	3.9	1.0	1.0	7.2	8.0	4.5	2.1	0.9
	Exc. K (cmol kg ⁻¹)	1.0	0.4	0.6	0.9	0.5	0.9	0.3	1.1	0.5	1.0	0.8
	Exc. Mg (cmol kg ⁻¹)	2.5	2.4	0.3	0.8	0.4	0.6	2.3	2.0	1.7	2.5	0.5
Mean g	grain yield (g/m ²)	S1	L S2	S	3 S	54 SS	5 .	S6	S7	S8	SS	9 S
Upland	rico	11	4 56	20	05 3	01 95	5 1	.61	360	583	62	2 2
Opianu	nce	T T 1	4 50	20	12 2	01 95	1	10.	500	202	02	
Maize		13	3 12	5	7 1	54 48	3 !	56	684	1079	13	3 3
Job's te	ears	<mark>14</mark>	1 <mark>12</mark> 4	<mark>1</mark> 20)4 <mark>4</mark>	<mark>91</mark> 18	<mark>6</mark> 1	. <mark>85</mark>	125	387	<mark>13</mark>	<mark>1</mark> 2

(Asai and Soisouvanh, 2017)

Application of Job's Tears

"Ready-to-eat processed job's tears as emergency food"

Ambient storage

Commercial sterilization process

Long shelf life

More nutritious than noodles or bread

Packaged in a retortable carton (recyclable)

Application of Job's Tears

Equipment Needed

- Steamers
- Filling/packing machine
- Retorts
- Cooling and drying conveyor

"Ready-to-eat processed job's tears as emergency food"

Sensorial Properties

 Acceptable results of 1:0.9 rice-adlai mixture (Peñaflor et al, 2014)

Benefits: Direct Impact

No need for refrigeration

Flexible product which can be paired with other food

Can also be marketed as RTE food

More nutritious products for disaster or calamities

Lower cost

Benefits: Indirect Impact

Reduced dependence on high environmental impact crops like rice

Increased resilience of crops to different climate conditions

Increased income and morale of farmers

Reduced migration of farmers to urban cities

Thank you for your attention!

with Support from

References

- Asai, H. and Soisouvanh, P 2017, Yield Performance of Upland Rice, Maize and Job's Tears in a Rainfed Upland Ecosystem in Mountainous Laos, Japan Agricultural Research Quarterly 51(4) pp 309-318
- Chysirichote, T. and Phongpipatpong, M. 2015, Effect of Sterilizing Temperature on Physical Properties of Rice Porridge Mixed with Legumes and Job's Tear in Retortable Pouch, Journal of Food Processing and Preservation 39 pp 2356–2360
- FAO 2017, The Future of Food and Agriculture, FAO, viewed 24 January 2020, <<u>http://www.fao.org/3/a-i6583e.pdf</u>>
- Mayes, S., Massawe, F., Alderson, P., Roberts, J., Azam-Ali, S., and Hermann, M 2012, The potential for underutilized crops to improve security of food production, *Journal of Experimental Botany*, Vol. 63, No. 3, pp. 1075–1079, viewed 24 January 2020 < https://www-jstor-org.ludwig.lub.lu.se/stable/pdf/26205429.pdf?refregid=excelsior/3A670da2292eb7b372976229cbe7d252d5>
- Mordor Intelligence 2020, Mordor Intelligence, viewed 24 January 2020 < <u>https://www.mordorintelligence.com/industry-reports/asia-pacific-ready-to-eat-food-market</u>>
- Pandey K.C. and A.K. Roy. 2011. Forage Crops Varieties. Indian Grassland and Fodder Research Institute, Jhansi. http://www.scribd.com/doc/54421060/Forage-Crop-Varieties. Pawkham, Jamlong. Conversation. March 22, 2010.
- Peñaflor, L., Elepaño, A., and Peralta, E. 2014. Rice-Like Grainsfrom Broken Rice (Oryza sativa L.) and Adlai (Coix lacryma-jobi L.) Asian Journal of Agriculture and Food Science. Vol 2. Issue 4. Pp 341-348
- Rana-Aradilla, A 2018, Phenology, Growth and Yield Performance of Adlay (Coix lacryma-jobi L.) Grown in Adverse Climatic Conditions, International Journal of Research & Review Vol.5; Issue: 3 pp 16-24
- van den Bergh, M.H. & N. Iamsupasit, 1996. Coix lacryma-jobi L.[Internet] Record from Proseabase. Grubben, G.J.H. & Partohardjono, S. (Editors).
 PROSEA (Plant Resources of South-East Asia) Foundation, Bogor, Indonesia. <u>http://www.proseanet.org.</u>
 Accessed from Internet: 27-Jan-2020
- Xi X-J, Zhu Y-G, Tong Y-P, Yang X-L, Tang N-N, Ma S-M, et al. (2016) Assessment of the Genetic Diversity of Different Job's Tears (Coix lacryma-jobi L.) Accessions and the Active Composition and Anticancer Effect of Its Seed Oil. PLoS ONE 11(4): e0153269. doi:10.1371/journal. pone.0153269
- Zhou L, Huang B, Meng X, Wang G, Wang F, Xu Z, et al. The amplification and evolution of orthologous 22-kDa α-prolamin tandemly arrayed genes in coix, sorghum and maize genomes. *Plant Mol Biol.* 2010; 74: 631–643